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Summary. In this paper we have discussed in detail the aspects of separability of 
the energy differences obtained from coupled cluster based "direct" methods such 
as the open-shell Coupled Cluster (CC) theory and the Coupled Cluster based 
Linear Response Theory (CC-LRT). It has been emphasized that, unlike the state 
energies per se, the energy differences have a semi-local character in that, in the 
asymptotic limit of non-interacting subsystems A, B, C, etc., they are separable 
as AE,~, AEB, AEA + AEs, etc. depending on the subsystems excited. We classify 
the direct many-body methods into two categories: core-extensive and core-va- 
lence extensive. In the former, we only implicitly subtract the ground state energy 
computed in a size-extensive manner; the energy differences are not chosen to be 
valence-extensive (separable) in the semi-local sense. The core-valence extensive 
theories, on the other hand, are fully extensive - i.e., with respect to both core and 
valence interactions, and hence display the semi-local separability. Generic 
structures of the wave-operators for core-extensive and core-valence extensive 
theories are discussed. CC-LRT is shown to be core-extensive after a transcription 
to an equivalent wave-operator based form. The emergence of valence discon- 
nected diagrams for two and higher valence problems are indicated. The open- 
shell CC theory is shown to be core-valence extensive and hence fully connected. 
For one valence problems, the CC theory and the CC-LRT are shown to be 
equivalent. The equations for the cluster amplitudes in the Bloch equation are 
quadratic, admitting of multiple solutions. It is shown that the cluster amplitudes 
for the main peaks, in principle obtainable as a series in V from the zeroth order 
roots of the model space, are connected, and hence the energy differences are fully 
extensive, It is remarkable that the satellite energies obtained from the alternative 
solutions of the CC equations are not valence-extensive, indicating the necessity 
of a formal power series structure in V of the cluster amplitudes for the 
valence-extensivity. The alternative solutions are not obtainable as a power series 
in V. The CC-LRT is shown to have an effective hamiltonian structure respecting 
"downward reducibility". A unitary version of CC-LRT (UCC-LRT) is proposed, 
which satisfy both upward and downward reducibility. UCC-LRT is shown to 
lead to the recent propagator theory known as the Algebraic Diagrammatic 
Construction. It is shown that both the main and the satellite peaks from 
UCC-LRT for the one valence problems are core-valence extensive owing to the 
hermitized nature of the underlying operator to be diagonalized. 
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1. Introduction 

The Coupled Cluster (CC) approach has emerged in recent years as providing 
versatile methodologies for treating many particle correlation in closed [1-4] as 
well as open-shell [5-31] systems. The last two decades have witnessed signifi- 
cant developments- both formal and computational- towards formulating 
coupled cluster based "direct" methods [6, 10-18, 21-29] for obtaining energy 
differences relative to a closed-shell ground state. Since many transition quanti- 
ties of physico-chemical interest are related to such energy differences as ioniza- 
tion potential (IP), electron affinity (EA), excitation energy (EE) or double 
ionization potential (DIP), the potential usefulness of coupled cluster based 
"direct" methods is quite clear. 

The efficacy of a cluster expansion representation of a wave-function (or, of 
the associated wave operator) in ensuring the correct scaling behaviour of the 
energy seems now to be well appreciated (see, e.g. Refs. [32, 33]). There has been 
considerable activity in recent years in the development of open-shell CC theories 
for open-shell states where the extensivity of the state energies obtained are 
carefully examined (see, e.g. Ref. [33] for an extensive survey). Since in the direct 
methods, one automatically drops the common correlation terms that are present 
in the ground and the excited or ionized states, the emphasis is naturally on 
correctly modelling the relaxation and differential correlation effects. A study of 
the scaling behaviour of the energy differences relative to the ground state poses 
more subtle and nontrivial aspects not necessarily encountered in the analysis of 
the excited state energies themselves. 

The aim of this paper is to highlight the recent activities of our group 
towards discerning and analyzing the nature of extensivity of the energy differ- 
ences generated by two major classes of the open-shell CC formalisms developed 
and studied by us. These are the open-shell CC theory for general model spaces 
[11, 14-16] and the CC-based linear response theory (CC-LRT) [21, 24]. We 
shall emphasize in particular that the scaling behaviour of the energy differences 
is described differently in the above two open-shell CC formalisms. In this 
presentation, we shall also indicate the kinship of these formalisms with other 
many-body theories in vogue. 

2. Separability of energy differences: core-extensive 
and core-valence extensive formalisms 

We argue that the effective hamiltonian formulation within a model space 
provides a very attractive framework not only for generating direct many-body 
methods for energy differences but also for analyzing their scaling behaviour. 
Since as yet we do not seem to have a commonly accepted terminology in 
describing the scaling behaviour of the energy differences, we shall be careful to 
define our own terminology and indicate how it applies to an effective hamilto- 
nian Herr for energy differences obtained via Bloch equation [34]. 
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Any microscopic extensive property X (such as the total energy) is additively 
separable [32] in the sense that in the limit of asymptotically vanishing interactions 
between the subsystems A, B, etc., one has: 

X-~ XA + Xs  + " " (2.1) 

where the sum is over all the subsystems labelled as A, B, etc. Conversely any 
property satisfying Eq. (2.1) may be called extensive (or size-extensive). Extensivity 
is obviously a global property since X in Eq. (2.1) receives contributions from all 
the subsystems A, B, etc. The earliest many body formulations by Goldstone [35], 
Hubbard [36] and Hugenholtz [37] highlighted the extensivity of the ground-state 
energy. 

For an exact excited state energy EL× corresponding to the state i, the same 
asymptotic property e.g. Eq. (2.1), obviously holds good, and the various open-shell 
formulations proposed recently [32, 33] have analyzed the behaviour of the Eex 
obtained from them. One should, however, note carefully that for the excited states, 
the subsystem energies EA, EB, etc. need not all be excited state energies for A, B, 
etc., since it is possible to excite the system in the asymptotic limit by exciting only 
a few of the subsystems. As a result, the separability of the energy differences AEex 
assumes a peculiar semi-local character in the sense that all the fragment excitation 
energies need not contribute to the asymptotic sum. In other words: 

AEe× : ~ AEA, AE A + AE B, AEA + AEs + AE c . . . .  (2.2) 

depending on which and how many of the subsystems are excited. In the remarkably 
perceptive paper by Hugenholtz [37], it was emphasized very early on that, when 
only one subsystem is excited, AEe~ depends only on that subsystem and not on 
the other subsystems at all (as is evident from Eq. (2.2)) and thus should not scale 
linearly with the total number of particles. In fact, in this case, we should expect 
the excited state E~x having a term Egr as the base of energy, scaling with N and 
another term AEA not scaling with N. When we want to emphasize this semi-local 
nature of the energy differences, we may even talk of their size-intensivity. In a 
recent paper, Koch et al. [29] have indeed used this term in an analogous context. 
For a more complete treatment, however, we also need to characterize the 
separability of AEex generally as a sum over several subsystem excitation energies, 
as implied by Eq. (2.2). Since the excitation energies are generated by the various 
hole-particle excitations out of the model space, the additive separability of AEex 
indicates a proper scaling behaviour of AE~x with respect to the various h -p  
excitations describing the excitation processes, rather than of the total number of 
particles. This aspect can be very conveniently analyzed in the effective hamiltonian 
framework. 

Any microscopic operator Y is called extensive, if it satisfies asymptotically: 

Y--* YA + Y8 + (2.3) 

where the sum runs over all the subsystems. Y is obviously a global operator, 
depending upon the total number of particles. 

The exact wave-operator f2 introduced in the context of the effective hamiito- 
nian formalism should be a multiplicatively separable operator: 

f2 --* (2 A 0 8 . . . .  (2.4) 

where all the fragment operators f2 A contribute. If O is written in an exponential 
or normally ordered exponential form as 

f2 ~ exp(S) (2.5) 
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then it follows that S is an extensive operator. Conversely, if one posits on f2 an 
exponential structure, and devises truncations and approximations on S, then f2 
remains multiplicatively separable. It is a straightforward matter then to show 
that Heft becomes an extensive operator (see, e.g. Refs. [32, 33] for an elaborate 
discussion). 

The space spanned by the functions on which Heff acts is conventionally 
called the model space [38, 39]. We also define holes, particles, and valence 
orbitals in the usual manner [38, 39]. We shall often use the term "active" for 
valence orbitals (holes or particles) and reserve the term "inactive" for the 
nonvalence orbitals. Operators capable of making transitions only within the 
model space are called "closed" [39]. We shall call an operator as "external" 
[32, 33, 40] when there is at least one model function which it can act on to 
generate a virtual function. In an effective hamiltonian formulation, the idea is to 
transform the hamiltonian H into another operator L via f2: 

L = f2-~Hf2 (2.6) 

and demand that the external part of L is zero. This defines the external part of 
12 (or of S, if the exponential form, Eq. (2.5) is used). Heu is then the closed part 
of L. When f2 is multiplicatively separable, we have: 

Hen~ = Lo, ~ H ~  A + H~ef~ + " "  (2.7) 

indicating clearly the extensive nature of the operator H~fr [32, 33, 40]. 
f2 satisfies the Bloch equation [34]: 

H D P  = f2PH~rP (2.8) 

If we confine ourselves to one n-electron Hilbert space sector of the Fock space, 
then P is the model space projector for that Hilbert space. It is also possible to 
adopt a Fock space strategy where the projector P can be interpreted as taking 
a "closed" projection on Fock space, and Eq. (2.8) stands for the pair: 

(Hf2)ext = (2~xtHef f (2.9a) 

(h f2)c I = f2ol He~r (2.9b) 

Since we are interested in generating direct methods for both the excited and 
ionized states, the Fock space strategy is the more convenient since it can handle 
states with varying particle numbers [5-19]. We shall, however, often use Eq. 
(2.8) for the Bloch equation, although its meaning should be interpreted as in 
Eqs. (2.9). 

It is pertinent to remark here that extensivity of an operator Y does not 
automatically guarantee extensivity of the associated property obtained after 
diagonalization in a truncated (less than complete) Hilbert space. This feature 
has to be borne in mind while trying to infer the extensivity or otherwise of the 
computed energies obtained by diagonalizing Herr. In case one includes in the 
model space all the functions that one can generate by allocating electrons in the 
valence orbitals in all possible manner (i.e. the model space is full valence or 
complete [38, 39]), extensivity of H ~  ensures the extensivity of the associated 
energies. This was the principal motivation behind generating extensive H ~  in 
the earlier MBPT [38, 39] and CC [5-10] formalisms in a complete model space. 
For incomplete model spaces [41], which are almost always warranted to bypass 
intruder problems [42], extensivity of Heer by itself is not a sufficient guarantee 
for the extensivity of the energies [44]. It has been proven recently [44], however, 
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that the fact that Heer is not only extensive but also a closed operator is sufficient 
to guarantee extensivity of the energies. We shall come back to this aspect in 
some detail in Sects. 4 and 7 of this paper. For the present we continue with our 
analysis of the size-extensivity of Herr generated by the open-shell CC theory and 
CC-LRT. 

For obtaining an effective hamiltonian for the energy differences relative 'to a 
closed shell ground state, we shall posit on (2 a multiplicatively separable form: 

~ = ~,.Q~ (2.10) 

where O+ is the wave operator for the ground state, and ~v is the "valence" part 
of f2 introducing additional correlation and relaxation effects concomitant on 
excitation or ionization. O c satisfies: 

Hf2c 49o = Egr('2 c (15 0 (2.1 1) 

where Eg r is the ground state energy and (b o is the hole particle vacuum for the 
state, conventionally called the "core" [38]. Substituting Eq. (2.10) into Eq. (2.8) 
and premultiplying by f2; -z, we obtain: 

I t Q . P  = f2oPHe~rP (2.12) 

where 

1~ = Q c l H ~ 2 c  (2.13) 

If  we separate f r om/4  its core or vacuum part, Egr and the operator part _O, 
and introduce a modified He~r defined as: 

/left = Meg -- Egr (2.14) 

we then get a Bloch equation for energy differences [14]: 

H f2vP = QvP1]e~rP (2.15) 

Clearly, the diagonalization of/7~er would provide us the energy differences. 
Ideally, we expect/?eer to display the semi- local  asymptotic behaviour in the 

sense that: 

Heft ~ HeffA ; /~eff A _~_ HeffB ; HeffA ql_ HeffB _}_/~-eff C (2.16) 

depending on the types of excitations (i.e., excitations of A; A and B; A, B and 
C, etc.). It is obvious that for this to be true, a necessary requirement is the 
validity of the extensivity of gg r itself: 

Egr--* EAgr+ EBgr+ " - (2.17) 

Thus, to ensure the additivity of /7~g in the sense of Eq. (2.16) we should 
maintain the extensivity of the ground state, i.e., the core. We call this the 
requirement of core-extensivi ty  [33]. Writing f2c as exp(T) as is done for the CC 
ground state, core-extensivity is automatically respected. Since H~r acts only on 
the model space, it has only active hole and particle creation/annihilation 
operators, f2 v thus introduces interactions between the valence quasi-particles 
and also interaction between the valences and the core. 

We analyze further the extensivity of/~efr in the sense of Eq. (2.16). For this 
to be true, it is necessary to have the multiplicative separability of Ov : 

f2v = F2A, Oe, f2C, . . . (2.18) 
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Since f2 v involves only active holes and particles, Eq. (2.16) implies the 
extensivity of/]e~ with respect to active holes and particles involved in defining 
the model space. Thus, Eq. (2.16) indicates the valence-extensive nature of/~e~. 
Validity of core-extensivity (i.e. Eq. (2.17)) being always an underlying feature, 
we call any He~ satisfying Eq. (2.16) as a core-valence extensive theory [33]. 

Since the number of valence occupancy is usually much less than the number 
of core electrons, one may argue that bulk of size-extensivity error in the excited 
states is eliminated once a theory is made core-extensive. One may then even 
abandon the requirement of valence-extensivity, and may posit a linear expan- 
sion structure for f~v as in a CI, rather than an exponential structure. In that 
case, Eq. (2.18) does not hold good, and as a result, Eq. (2.16) is not generally 
satisfied. Such theories generally do not conform to the separability requirement, 
Eq. (2.2), for AEex. We call such theories as of core-extensive type [33]. 

The open-shell CC theory for energy differences based on Fock space and 
quasi-Fock approach [44-45] belongs to the core-valence extensive category. 
The CC-based linear response theory (CC-LRT) [21, 24], developed some years 
ago, does not start from the Bloch equation, but we shall show in the next 
section that it is entirely equivalent, in its time-independent form, to a Bloch 
equation based formalism using a core-extensive choice for ~+, but a valence- 
inextensive choice for f2 v. CC-LRT is thus a core-extensive theory. 

We should note here, that the decoupling condition for Q, viz Lex t = 0, 
defines only the external part of f2 (or of S). One still has a choice for the closed 
part of (2 (or of S), which is as yet quite arbitrary. To get an extensive 
formulation, one must choose an f2cl that is compatible with the extensivity of 
H~fr or/?~fr. We have shown recently that, "for an arbitrary model space, a useful 
choice for S is to take it as an external operator only [11, 12]. ~2ol is then not the 
unit operator on the model space, indicating that the conventional intermediate 
normalization for ~ is not a size-extensive choice [11]. In fact, for a core-valence 
extensive theory for EE (which use h-p model space-  an incomplete one), 
intermediate normalization must be abandoned. Ho~r comes out as both con- 
nected and closed with S chosen as Sext. When intermediate normalization is 
used, disconnected valence-valence terms (or equivalently, diagrams)appear in 
H~fr, spelling a break-down of the valence-extensivity [32]. However, no vacuum 
diagrams appear, and core-extensivity of the theory is not violated [32]. Clearly, 
when ensuring valence extensivity is not our goal, as in formulating a core-exten- 
sive theory for EE as in CC-LRT, one may use the intermediate normalization 
for ~?v. 

In the open-shell CC theory in Fock space, ~2~ is written usually as a normal 
ordered exponential: 

(2 o = {exp(S) } (2.19) 

S involves all possible excitations from valence holes and/or valence particles 
present in the model functions and might involve additionally nh-np excitations 
from the core. It has been proven [5, 6, 11, 12] that one has to invoke a Fock 
space strategy for uniquely defining the various components S ~",") of S involving 
explicitly m hole and n particle destruction operators. Qv is "valence-universal" 
[6] in the sense that S involves not only S ~k'l) for the kh-lp parent model space, 
but also S (',n~ with m < k, n < I for the subduced model spaces. Thus, for EE, f~v 
involves- besides S °,1), acting on the h-p model space -  operators like S u'°) 
and S m'~> characterizing the cationic and anionic model spaces with (N - 1) and 
(N + 1) electrons respectively. The essential point of interest in this structure is 
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that for EE, the action of Qv on the h - p  model space, with the projector p(~A), 
may be described as: 

O~P (l'l) = {(1~ + S°'°))(l~ + S c°'J)) + S(1"I)}P O'l) (2.20) 

It is the presence of product-separable operators (1 + S(~'°))( 1 + S c°'~)) for lh 
and lp subsystems that lends the valence-extensivity to H~e in the open-shell CC 
for EE. 

The CC equations in Fock space take the form [5, 6, 11]: 

{/~ exp(S) }ext = {exp(S)Heff}ext (2.21a) 

I [ I 

{/7 exp(S)}c, = {(exp(S))o,/-?~r}c, (2.21b) 

Since all the terms in Eqs. (2.21) are connected, the extensivity of Sv and/qefr 
follows by iteration in powers of perturbation. For an incomplete model space, 
(exp(Sv))d is not necessarily unity [11]. 

In a parallel development quite distinct from the Fock-space methodology, 
several many-body theories have been put forward which work on an n-electron 
Hilbert space [41, 43, 45-47]. Hose and Kaldor [41] had been the first to 
formulate a Hilbert space MBPT that used an incomplete model space. The 
effective hamiltonian generated by them was inextensive, the origin of which can 
now be traced [44] to their use of intermediate normalization for f2 which is 
known to be a size-inextensive choice for an incomplete model space. Jeziorski 
and Monkhorst [43] developed a CC theory for both complete and incomplete 
model space in a Hilbert space framework. They used the intermediate normal- 
ization for f2 throughout. They proved that Herr in their formulation is connected 
for a complete model space although for an incomplete model space size-inexten- 
sive terms appear. Once the importance of maintaining a size-extensive normal- 
ization for g2 for an incomplete model space is recognized, it is possible to 
develop size-extensive Hilbert space type of CC theories. Recently there have 
appeared two such formulations [45-47]. 

Instead of hierarchically building the higher valence cluster amplitudes all the 
way upto the desired parent model space in the Fock space approach, one may 
simply project f2~ onto the parent model space p(,,.n) itself. The lower valence 
amplitudes S ok'/) ((k, l) < (m, n)) are then redundant [33] and appear always in 
specific combinations with the parent S (m,~) amplitudes. By taking each model 
space function q~u as the vacuum for computing f2~ cb~ in the spirit of Jeziorski 
and Monkhorst  [43], one may work with the right number of amplitudes. These 
amplitudes are related to the fixed combinations of S (m'n) and S (k'~) amplitudes 
just mentioned. We have shown recently [45, 46] that the resultant ansatz for ~2v, 
for a n-electron Hilbert space of incomplete model space, given by: 

f2 v = ~ exp(S 0[ cb~) ( ~b~ [ (2.22) 

leads to connected expressions of / te~ and energy differences where S ~' is chosen 
to have all the "external" operators (the external operators being defined exactly 
as in the Fock space theory). We have denoted this theory as of quasi-Fock type, 
since it bypasses hierarchical generation of f2, although an underlying Fock space 
separation of  f2 into f2~ and f2,. is built in the theory. One can even envision a 
quasi-Hilbert space theory [45, 46], where no attempt to factorize f2 into f2 c and 
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f2 v is made and S" is taken to possess only external operators. This theory will 
generate open-shell state energies per se. Intermediate normalization for £2 is 
abandoned in both the above developments. 

Meissner et al. [47a] approached the problem from a different angle. They 
emphasized that the requirement that a particular type of operator always leads 
to excitations outside the model space - independent of ~b" it acts upon, is not 
compatible with an arbitrary model space. Only for a special type of incomplete 
model space, known as "quasi-complete model space" [52] (vide infra) does one 
have this guarantee, for which a connected formulation for an He~ for the state 
energies per se is possible as a generalization of the Jeziorski-Monkhorst 
formulation. Since for an arbitrary model space, an operator exciting from ~" 
may lead to scattering within the model space when acting on another ~b v, one 
has a choice in either retaining or deleting this operator in SL These operators 
are termed quasi-open by us [45, 46]. In a later paper, by analyzing the 
expressions for S"'s at low order of perturbation theory, Meissner and Bartlett 
[47b] showed that all such operators leading to "internal excitations" should be 
retained for connectivity. This formulation leads to a quasi-Hilbert space CC 
theory. Retention of the operators discussed above in all the S"'s is equivalent to 
including in S~'s all the quasi-open operators as introduced by Mukhopadhyay 
and Mukherjee [45, 46]. The analogous quasi-Fock space type formulation for 
energy differences was not considered by these authors. 

Unlike in the Fock space type of theories, if we use for f2~ in EE a linear 
expansion structure involving various nh-np  excitations, then the subsystem 
product separability is violated, and as a result the valence separability of EE will 
break down. In fact in CC-LRT [21, 24] an excited or ionized state ~k is written 
in terms of an excitation or ionization operator W~ acting on the N-electron 
ground s t a t e  I/Yg r written in the CC form: 

7Jk = W + exp(T)45 o (2.23) 

where W/- is indeed taken as a linear combination for various m h - n p  operators 
to generate a ~uk with (N - m + n) electrons. We may write the equation for the 
energy difference in the EOM-form as: 

[H~ W~-] ~rtgr = AEkm ~ t/Jg r (2.24) 

The open-shell CC theory and CC-LRT sketched above appears at first sight 
to be structurally quite dissimilar. The former utilizes a wave-operator (2, while 
the latter - in the time-independent version [24] - uses an excitation or ioniza- 
tion operator W +, as in the equation of motion (EOM) approach. We shall 
show in the next section that one can transcribe the working equations for 
CC-LRT to a Bloch equation form involving Herr which will clearly reveal the 
linear expansion structure of the associated f2v. This will also enable us to 
analyze the extensivity of the energy differences from a unified framework. For 
earlier discussions on this point see Refs. [49]. 

3. Transcription of CC-LRT from the E O M  form 
to an equivalent wave-operator based form 

Utilizing the fact that WZ- and T have only h - p  creation operators and hence 
commute, we premultiply Eq. (2.24) by e x p ( - T ) ,  use Eq. (2.13) f o r / ~  and the 
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definition H = / 4 -  gg r to obtain the working equation for CC-LRT for energy 
differences: 

lq, + + W~ ](b 0 = AE k Wk 4~o (3.1) 

Equation (3.1) indicates CC-LRT is a particular variant of generalized TDA 
employing a vertex-normalized/-7 incorporating the ground-state correlation. 

Using Wick's theorem, we may rewrite Eq. (3.1) as: 

)7 i i _ J  

W~- + + -- W~ 14] 45 o = AEk Wk Do (3.2) 

where 'Aft denotes contractions between creation/annihilation operators in the 
two operators A and B. Since in CC-LRT we choose WZ to contain only mp-nh 
creation operators, ~ vanishes and we have: 

W~ Do AE~ W2 Do (3.3) 

We can now show that Eq. (3.3) can be written equivalently as: 

HW~ ~b o = AE~ W~ Do (3.4) 

owing to very special structure of H. Since H and W2 are both written in normal 
order, we have, from Eq. (3.3): 

i+ 
- + - 

= H W k  Do {HW2 }D o (3.5) 

where { } denotes normal ordering of the product in the braces. Since {HW~ } 
acts on the physical vacuum, all those terms involving h - p  destruction operators 
f rom/7  will give zero contribution. The only potentially non-vanishing contribu- 
tion from - + {HW~ } can come from the term o f / 4  having h - p  creation operators 
only. Since we solve for the ground state cluster amplitudes T by equating the 
various nh-np excitation terms o f / - /  to zero (these are the closed shell CC 
equations), all those terms of /~ involving only h -p  creation operators are 
vanishing by Construction, and we thus have the equivalence of Eq. (3.3) with Eq. 
(3.4). We now show the emergence of a form of Bloch equation (2.15) from Eq. 
(3.4). 

Z + W~- can be expanded in the basis { ,,,, } with a fixed (m-n), having mh and 
np creation operators: 

W~ = ~ C.~n,kZ+. (3.6) 
m , n  

Z + Let us partition the operator space { m,n ) into tWO parts. For low-lying 
excited/ionized states, the relaxation and change of electron correlation conse- 
quent on excitation/ionization is not drammatic, and most of these effects are 
dominated by the lowest rank components of {Z+. }. Thus for IP, EA and EE, 
Z + Z + and Z + 1.0, o,1 1.~ are the dominant components respectively. In analogy with 
the open-shell CC theory, let us denote as the subset {Z + } those components of 
Z + { m,. } that have the lowest h - p  ranks and call this the model component or the 

primary space component [49]. The complementary subset {Z~ } will be called 
virtual manifold or the virtual space component, 7Jk can then be decomposed as: 
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Introducing model functions ~bm, + , = Zm. . eb o, and virtual functions Z .... we 
may rewrite Eq. (3.7) as: 

Tk =exp(T)  I ~ C m n , k ~ l m , n - ~ - 2  Crs,kZr,s I (3.8) 
m,ncP r,seQ 

Introducing coefficients dr,,.m, satisfying: 

we have: 

drs,mn = ~ C~,j[C-~I,,m, (3.9) 
l 

T k = e x p ( T )  ~, Cm,,kI~b .... + Z dr  . . . . .  Zm,n] (3.10) 
m,n e P r,se Q 

If we now introduce a "state-universal" wave-operator f2~ satisfying [49]: 

we find that f2~ 

m,n e P 

rn,ne e r , s e Q  

is given by: 

+ f2~ = 1~ + ~ ~ drs,,~nZr,sZm,, (3.12) 
r,seQ m,neP 

Equation (3.12) clearly indicates that CC-LRT has an underlying f2~ that has 
a linear expansion structure involving valence creation and destruction opera- 
tors, Since r -  s = m -  n, ~2~ preserves number of electrons, unlike W + which 
changes the number of electrons by (n-m) relative to the ground state. 

We thus have: 

Tk = exp(T) f2 v T O (3.13) 

with f2~ given by Eq. (3.12), indicating the core-extensivity of CC-LRT. 
We note here several features of  CC-LRT which has made its equivalence 

with Bloch equation-based approach emerge: 

(i) in CC-LRT we have used the ansatz Tk as W~ exp(T)~b0 where both W~ 
and T contain only particle-hole creation operators, leading to commutativity of 
W~ and exp(T). This was crucial for generating the dressed hamiltonian H 
leaving W + intact. 

(ii) the imposition of the cluster structure for ~2 c = exp(T) leads to the vanishing 
of all the np-nh excitation operators of R - a feature essential for the transcrip- 
tion. 

In the next two sections we shall analyze the extensivity of AEk's obtained 
from CC-LRT and compare its structure with the other Bloch equation based 
core-extensive theories. Since the latter invariably use an effective hamiltonian 
defined over a model space, we have to explicitly analyze the structure of f2~ 
implied by Eq. (3.12). 

We note that f2 v is obtained as a result of "folding" the effect of the virtual 
manifold into the model manifold. This can be accomplished by two different 
procedures. One may either invoke an eigenvalue independent partitioning tech- 
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nique (EIP) [51] leading to an effective hamiltonian formalism of the Rayleigh- 
Schr6dinger type. This method is very instructive in that it shows the equivalence 
of the CC-LRT for IP and EA problems with the analogous open-shell CC 
problem [14] and also indicates why for situations with more than one valence 
occupancy, the equivalence between the two formalisms breaks down. This is 
described in Sect. 4. In another approach, the folding is performed via an 
eigenvalue dependent partitioning technique (EDP)-leading to a Brillouin - Wigner 
type structure [50] for Hee. We shall discuss in Sect. 5 the emergence of a 
Bloch-Horowitz like structure of Bee using EDP. 

4. Extensivity of energy differences in CC and CC-LRT 

4.1. Eigenvalue independent partitioning applied to CC-LRT: 
A Rayleigh-Schr6dinger like core-extensive formulation 

The energy-independent folding in the model space of the {Z~ } operator in 
CC-LRT lends an energy-independent structure to the effective hamiltonian. To 
achieve this, we use the matrix eigenvalue-independent partitioning technique 
(EIP) suggested by Coope et al. [51]. Although these authors developed EIP for 
symmetric eigenvalue problems, ours is a generalization encompassing nonsym- 
metric matrices [14, 50]. 

Let us project Eq. (3.1) onto functions {Z + 450} and {Z~ ~b0}. The working 
equations for CC-LRT then take the familiar eigenvalue equation form: 

RCk = AEkCk (4.1) 

with R, a matrix with elements: 

= <¢olZ,[/-L z ;  ]1¢o> (4.2) 

and AEk's are the energy differences for the states Tk, with Ck's as the 
eigenvectors. Z + etc. denotes generically both the operators Z + ,  and Z + Let r , s  • 

us assume now that we are interested in only those roots which are dominated 
Z + Z + by the subset of the operator manifold: { ,,,, }. The rest of the set { r,.,. } is 

the "virtual space". The matrix R then naturally gets partitioned into the 
form: 

R _ ~Rep RpQ] (4.3) 
[RoB RQQJ 

and similarly the vectors C~ get partitioned as: 

c =FCPK~ (4.4) 
LCoxJ 

Our intention now is to focus on np roots AE k which are dominated by the subset 
{Z + }, np in number. If  we write all the ne vectors in successive columns, and call 
this (ne + ns) x ne matrix as Cp, then the eigenproblems for ne roots AE~ may 
be compactly written as: 

RCe = Ce AEp (4.5) 
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where AEp is the diagonal matrix of  the roots. Cp, from Eq. (4.4), partitions as: 

~C,e] (4.6) 
Ce - [ _ C e e /  

Since the roots in AEe are dominated by the subspace P, the projections of 
the vectors CK on P - CeK's - are expected to be linearly independent, so that 
the ne × ne matrix Cee is invertible. In case this is not so (i.e., Cee is precariously 
close to being singular), we may always make this nonsingular by suitably 
expanding the operator manifold (i.e., by redefining our model space). We now 
write Eq. (4.5) in long hand, using Eq. (4.3) as: 

RpeCee + RpQCQp = Cee AEp (4.7a) 

RQeCep + RooCQp = CQe AEe (4.7b) 

Let us now introduce a partitioning matrix Xoe, defined by: 

Xoe  = Cop C~'~ 

Thus from Eqs. (4.7), we have: 

Ree + ReQXQp = Cee AEeC~, = See (4.8a) 

Roe + RooXoe = XoeXee 

= XoeRee + XopReoXOe (4.8b) 

Solution of Eq. (4.8b), which is quadratic in Xop, gives us the n o x ne matrix 
Xoe, whose substitution in Eq. (4.8a) furnishes us an effective hamiltonian-like 
matrix Xpe. The roots of See are the AEk's with eigenvectors CeK. Since 2:pc 
does not parametrically depend on AEk's, this partitioning is called EIP. We 
could have obtained Xoe and X m, directly from Eq. (3.11), using Eq. (3.12), by 
identifying XQe with the matrix of drs.m, and See as Hen-. The above formulation, 
however, is more concrete and indicates the matrices that are really involved in 
the computation. 

Xoe may be solved from Eq. (4.8b) in orders of perturbation, which in turn 
generates a perturbative expansion for Xee. It is obvious that this expansion for 
See is of Rayleigh-Schr6dinger type. Let us assume that H may be decomposed 
into the Hartree-Fock part F and the perturbation H (~). Then R decomposes 
into R(°)+ R °), where R (°) is a diagonal matrix. Equation (4.8b) leads to: 

- + ReoXoe] (4.9) [xoe  ,R~oqoe = m,~ n ( , ~ x o  e v ro~,~ (17 . t .Op -~- I~Q~ l . Q p t . .  Pe 

Equation (4.9) is the matrix form of the Bloch equation (3.12) in the fixed 
Hilbert space spanned by {Z + }. Although this is strongly reminiscent of an 
analogous equation used for generating open-shell MBPT [38, 39] or CC theory 
[6-8], we should remember that for a truncated theory, the Hilbert space 
spanned by {Z + } is not complete. This spoils the valence-extensivity of CC-LRT 
as we shall presently see. 

Let us analyze the extensivity of the corresponding AEk's obtained by 
diagonalizing Xee. We shall study two concrete cases: the one valence problems 
(IP/EA) and the two-valence problems (EE and DIP). 

In what follows, it would be convenient to define two different types of 
external operators: quasi-open and open [32, 33, 40]. The former has meaning 
only for incomplete model spaces. For an incomplete model space, P, one may 
define its completion R which together with P forms the complete model space. 
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An operator is quasi-open if there is at least one model function on which its 
action leads to an excitation to the space R. These operators have only active 
(valence) operators like the closed ones, but they have special valence labels on 
them. Open operators cause transitions to the space ( Q -  R), and hence has at 
least one inactive creation operator. 

For an arbitrary incomplete model space, quasi-open operators may induce 
transitions within the model space when acting on some model functions. In 
contrast, an open-operator can never induce transitions within the model space. 
There is, however, a very special incomplete model space for which a quasi-open 
operator cannot induce transitions within the model space. This model space, 
introduced by Lindgren and called quasi-complete by him [52], is generated in a 
special manner: one groups the valence orbitals into groups A, B, C, etc. and 
assigns fixed occupancies nA, ns, nc for each group; one then constructs all the 
possible determinants with the above occupancy. These determinants span the 
quasi-complete model space. A quasi-open operator then, by the very nature of 
this model space, has to change the occupancy of at least one group and thus, by 
construction, cannot lead to transition within the model space. Such model space 
plays very special roles in generating extensive energies, as we shall see. 

For IP(EA) computations, there is only one valence occupancy in the model 
space. H is a connected hence extensive operator. The model space being 
complete, XQP is of open category. An order by order expansion of XQ? 
generates X~)p'S which have operator structure like Z+2.1Zl,0, Z~zZI.0, etc. for the 
IP problem. Since R has no vacuum terms, and no nh-np excitations, at no stage 
of iteration can we generate disconnected vacuum terms in Xoe. Spp also then 
can have no vacuum terms. Also in Spp, XQ? has to be connected to RpQ in Eq. 
(4.8a), since otherwise XQe would induce a transition to the Q space, it being an 
open operator. As a result, £Pe for IP is a connected operator. Since the model 
space for a one-valence problem is necessarily complete, the associated energies 
have no disconnected terms. The IP's computed for the main peaks, i.e., those 
dominated by the manifold Z + 1.o are thus core-valence extensive. This, of course, 
is only expected. CC-LRT is core-extensive any way, and for one valence 
problems we cannot further subdivide the valence occupancies into subsystems 
[14, 49]. The same is true likewise for the EA problem. 

We now show that a nonperturbative solution of Eqs. (4.8) generates the 
same roots as those obtained from open-shell CC theory for IP(EA) [14, 49]. Sv 
operators of the type ore°'°), ,-~('~'~°'1)~, for the IP(EA) introduce single shake-up, 
double shake-up etc. excitations from the model space. Since ~ is chosen in 
normal ordered form, the exponential like structure terminates after the linear 
term when acting on p(~,o) (or p<O.J)). Thus, for IP, we have: 

{exp(1 + S~l,°))}P (1,°) = {1 + S~ l'°) }p(,.0) (4.10) 

By comparing Eq. (4.10) with Eq. (3.12), it becomes clear that O, for the 
open-shell CC formalism has also a linear expansion structure as in CC-LRT, 
and thus has the same underlying extensivity property. For the same truncation 
of the operator manifold in CC-LRT theory and CC theory, this equivalence 
obviously will continue to hold good. 

One might wonder that we have a contraction of information of sorts here, 
in the sense that the original CC-LRT equations have potentially (np + nQ) 
roots, as is evident from Eq. (4.3), while the corresponding Bloch equation based 
formulation generates only ne roots from Sep. We should note however, that the 
Bloch equation, Eq. (4.8), for XQe is quadratic - allowing multiple solutions. The 
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same is true of the analogous equations for Sv amplitudes in the CC formalism. 
The shake-up roots can thus be obtained in principle by homing on to these 
alternative solutions. Such a procedure was in fact adopted by us to generate 
shake-up roots from the open-shell CC formalism [14]. Since these roots are 
dominated by the 2h-p (h-2p) determinants for the IP (EA) problem - having 
more than one valence occupancy - the question naturally arises regarding their 
extensivity. 

4.2. Core-extensivity of satellite energies obtained 
as alternative solutions to CC equations 

We first note that we cannot generally infer the core-valence extensivity of these 
roots even if we solve for the alternative roots for Xep from Eqs. (4.8) or (4.9), 
since the connectivity of/Te~ for the main roots were obtained by an iteration in 
order of perturbation. The alternative roots are not obtainable from a perturba- 
tion series. To look into the nature of extensivity of the roots for the shake-up 
peaks we follow a different strategy. 

We write the complete eigenproblem for the matrix R in Eq. (4.3) as follows: 

I Rpp RpQ~[Cpp CpQ]:[Cpe CpQ~[EoP 0 I (4.11) 
ReP ReeJLCep Ceel LCep Cee_l Ee 

Introducing a matrix K with elements: 

VlpP 0 ] (4.12) 
K = LXop loo 

and its inverse K -1 as: 

K- '  = V le? 0 1 
L-XQp lee 

we may rewrite Eq. (4.11) as: 

[SOP Reo~ZoojICo p DQQjDPQq = L[CPPo DQQjDPQ~ [Ep 

where 

(4.13) 

0 I (4.14) 
EQ 

and 

ZOO = Ro_ a -- XoeReQ (4.15) 

D p Q  = CpQ 

DQQ = COQ -- XoeCeQ (4.16) 

Equation (4.14) indicates that the shake-up roots can be obtained by 
diagonalizing Zoo, with eigenvectors generated as DQQ, once XQ? for the main 
roots gets known. ZOQ is not an effective hamiltonian for the shake-up roots, 
however, since the component Dee outside the Q-space remains non-zero. Since 
XQp admits of a power series expansion (being obtained from the main roots), 
ZQQ can be analyzed as a power series in R m. As a matter of fact, we have: 

Z ~ )  = •,1) ~l.n -- X ~ p  1)/2(1) (4.17) .~,. QQ a~. pQ 
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Fig. 1. Disconnected valence diagram contributing to 
Soo for the satellite roots. The filled circle indicates the 
vertex stemming from XQp. In the second order it is 
simply an R °) vertex with an energy denominator 

Already at the second order, we have a disconnected valence diagram of the 
type shown in Fig. 1. The cross-hatched circle stands for the R (~) vertices, and 
the XQe operator is indicated by solid vertex. This indicates that the shake-up 
roots obtained from CC-LRT are not valence extensive. The same conclusion is 
hence also valid ipsofacto for the alternative roots from the CC equations for IP. 
However, since R has no nh-np excitation terms, at no stage of diagonalization 
of SQQ, would we encounter disconnected vacuum diagrams. The core extensivity 
of the shake-up roots is thus guaranteed. The demonstration of lack of valence- 
extensivity of the energies obtained as alternative solutions of the CC equations 
is, in our opinion, a rather nontrivial result. The same situation prevails for the 
multivalence problems in CC theory. For a more extensive treatment, we refer to 
one of our forthcoming papers [53]. 

4.3. Core-extensivity of  CC-LRT vs core-valence extensivity of CC theory 

For two and higher valence problems, the above equivalence of CC-LRT and 
CC-theory does no longer hold good. For these situations, the CC-LRT contin- 
ues to use a linear expansion of W~- in terms of {Z + } operator, and hence the 
associated (2~ has also a linear expansion structure. In contrast, the CC theory 
uses an exponential structure which does not terminate after the linear term, 
unlike what we encountered in Eq. (4.10). This difference is crucial in ensuring 
valence extensivity of the dEk's in CC theory, while this is no longer so in 
CC-LRT. 

To illustrate this, we take a typical example from EE. Let us assume that the 
Hilbert space Q is spanned by 2h-2p determinants, and consider a fourth order 
diagram of Spp stemming from a typical third order v~3) diagram from the term ~x Qp 
X~I) ot~)v~l) of Eq. (4.9) having 2h-2p intermediate illustrated in Fig. 2a. This Qp2~'pQ'J" Qp 

v~4) of the type shown in Fig. 2b. This is a manifestly disconnected generates a ,~pe 
diagram which spoils the valence extensivity of the energies. This term remains 
non-vanishing even if there is very little interaction between "hole" part and 
"particle" part of the subdiagrams. The counter-terms which would have can- 
celled this disconnected term at fourth order can emanate only from diagrams 
having 3h-3p excited states in Q-space - which are absent in truncated calcula- 
tions. These diagrams for -per~4) are of the types as shown in Fig. 3. Using the 
Franz-Mills  identity [54], it is easy to show that the two diagrams of Fig. 3 will 

p p  ~- 

Fig. 2. a A disconnected norm-correction type diagram contributing to X~Jp for EE in CC-LRT, b 
~4~ Its contribution to Z?e, generating a disconnected valence diagram 
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Fig. 3. Disconnected 
diagrams with 4h-4/, 
intermediates stemming 
from the sum over states 
which could cancel the 
diagram of Fig. 2b 

cancel the terms shown in Fig. 2b. Since, using the Har t r ee -Fock  orbitals for the 
ground state, the first one body term of R (1) appears at second order, the first 
disconnected diagrams appear at fourth order, as in ~pp~/'(4). This feature was also 
noted by Meissner and Bartlett, as announced in the Harvard Symposium in CC 
theory [55]. 

For  the CC theory, however, even if we assume that there are only S~ 1,°) and 
S~ °'~) operators in the calculation for EE, which excites 2h-2p  determinants from 
the h-p model space p~1.1), the presence {S~I'°)S ~°'~)} in f2 v will induce the 3h-3p 
excited determinants, and this will automatically generate the counter terms of 
the type shown in Fig. 3. Even in a perturbative calculation, this cancellation will 
remain valid, if we invoke a perturbative construction of Sv, rather than of f2 v 
itself. 

Koch et al. [29] have very recently demonstrated that CC-LRT for EE 
generates AEk's that are size-intensive in the sense that when the system consists 
of subsystems A and B, AEexA and AEex8 are possible solutions of CC-LRT. We 
reanalyze this example for EE, taking a Hilbert space of h-p(P) and 2h-2p(Q) 
determinants, to shed further light on the extensivity. For  CC-LRT, the matrix 
R is defined in the P + Q space above, while we take as our model space this 
(P + Q) space for the CC theory. In both cases, we diagonalize a matrix in the 
space of h-p and 2h-2p determinants. 

We discuss the CC theory first. Since h - p  excitations from 2h-2p  functions 
lead to 3h-3p functions lying outside the model space, they are external 
(actually quasi-open) operators, and we have to introduce Sv operators to 
eliminate the corresponding Lq.open operators. Since these same types of excita- 
tions connect  the h - p  model functions to the 2h-2p model functions, there is a 
null entry in the blocks for the matrix of/-Iefr connecting the h - p  and 2h-2p  
functions. The matrix is thus of structure shown in Fig. 4. The energies for the 
roots corresponding to dominance of h - p  determinants are obtained by diago- 
nalizing the block marked / ,  while those dominated by the 2h-2p  determinants 
are obtained by diag0na!izing the block marked II. In both cases, we diagonalize 
a matrix of a connected operator in the quasi-complete model space nh-np, for 
n = 1 and 2. The operator by construction is closed. 

We now prove that a matrix of a connected operator defined in a quasi-com- 
plete model space generates valence-extensive energies. The proof  is by perturba- 

lh-lp 

2h-Zp 

lh-lp 2h-2p 

Fig. 4. The block structure of the matrix of Her r in the 
h-p + 2h-2p model space in the open-shell CC theory. Note 
the appearance of the null-matrix in the lower off-diagonal 
block 



Separability in CC-based direct methods for energy differences 457 

tive reasoning. We may follow the diagonalization as a perturbation series for 
each root. The norm correction terms can generate manifestly disconnected 
diagrams. We may juggle these terms, using Franz-Mil ls  identity [54] to rewrite 
them as disconnected terms having various intermediate states reached by the 
operator, which is closed by construction. Since a closed operator always scatters 
only within the model space, the intermediates are all of  model space type, since 
the model space is quasi-complete. These terms are hence cancelled by the 
disconnected term containing general sum over the functions of the quasi-com- 
plete model space. Another way of looking at the problem is to note that, unlike 
CC-LRT, we can never have terms corresponding to the Fig. 2b or 3, since the 
vertices leading from h - p  to 2h-2p  functions correspond to quasi-open opera- 
tors, which are zero by construction (these conditions are used to find the 
corresponding S~ amplitudes). This is reflected in the lower block-diagonal 
structure of the effective hamiltonian matrix. Thus, the  energy differences ob- 
tained for EE from CC theory (or DIP by a similar reasoning) are core-valence 
extensive. 

We shall now analyze the semi-local separability in the sense of Eq. (2.2) of  
the energy differences obtained from CC and CC-LRT. Continuing with our 
example, we go to the limit of  two non-interacting subsystems A and B. A thus 
have h - p  and 2h-2p  excitations. The joint excitations on AB can have at most 
2h-  2p excitations~ 

For the case of  CC-LRT, we explicitly show, using arguments similar to 
those of Koch et al. [29], the blocks marked A, B and AB to indicate the 
subsystems excited. Owing to the connectivity of H, the matrix R assumes the 
block structure shown in Fig. 5a. Clearly then, possible solutions from CC-LRT 
are AEA and AE~ indicating the size-intensive nature of the theory. To see the 
separability properties of EE when A and B are both excited, we explicitly show 
the structure of the AB block. As we pull the two subsystems apart, the functions 
in the AB block may be of four different types: (i) one valence occupancy on A 
and one valence occupancy on B, denoted as AiBl (an example: lh on A, lp on 
B) (ii) three valence occupancy on A and one valence occupancy on B, denoted 
by A3B~ (iii) occupancy of  the type Al B 3 and (iv) occupancy of  the type A2B 2. 
The structure of  the AB block is shown in Fig. 5b. Clearly, when we have single 
excitation on A and single excitation on B (A2B 2 type), AEA + AE8 is a possible 

a AA BB 

o 

AB O O 

b 

AB AIBI 

A I B1 

0 

A3B 1 A1B3 
% 

o 
~ z 
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0 © 

A2Bz 

0 

© 

O 

Fig. 5. a The block structure of the matrix R in CC-LRT for EE showing explicitly the subblocks 
corresponding to the subsystems A, B. b The detailed structure of the subblock AB of Fig. 5a 
showing the possible valence excitations in the subsystems A, B 
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A~ B I 

B 
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A3B3 

A1 B3 

-E 
AI BI 

B 

Fig. 6. Generation of disconnected valence 
diagram in the AB block with 3h-3p 
intermediate of the type A3B3 

solution. However, when we have excitation of the type AiB1 (i.e. one hole on 
A/B and one particle on A/B), we have disconnected diagrams of the type shown 
in Fig. 6, when we fold the effects of A3B 1 and A1 B3 blocks into A1B~ block. This 
stems from a norm correction type diagram coming from A 1B3, A3B1, and A 1BI 
coupling, juggled using Franz-Mil ls  identity to have an intermediate state of 
A3B 3 type. Since there are no A3B 3 intermediates in the general sum, this term 
will remain uncaneelled and will spoil the additivity of one valence energies 
AEA + AEs when one valence is a hole and the other is a particle. Similarly, for 
the DIP process, we expect some solutions for AED~ P ¢ AE1p, A + AEwm when we 
ionize singly on two subsystems A and B, when they are non-interacting. Figure 
6 shows that there is a spurious dispersion type interaction between subdiagrams 
for A and B. In contrast, the corresponding block structlire for the Herr matrix 
in the CC formulation will be entirely different. The blocks H and III will be 
additionally zero in the Herr matrix, since they correspond to quasi-open excita- 
tions. As a result, even for AIB1 block, AEk = AEA + AE~ will hold good. The 
other zero entries will remain, lending complete subsystem separability of the 
AEk's. 

5. Eigenvalue-dependent partitioning applied to CC-LRT: a Brillouin-Wigner like 
core-extensive formulation (variant of BIoch-Horowitz theory) 

We now show a way to fold the effect of the virtual manifold {Z~ } in a manner 
reminiscent of the Brillouin-Wigner theory [49b]. Since CC-LRT is a core-exten- 
sive theory, this will generate a Brillouin-Wigner theory involving only the 
energy-shifts AEk, i.e. a theory of Bloch-Horowitz  type. 

For  this, we use Eq. (3.8) to rewrite the function ~k as: 

~k = exp(T)t2v 7/° (5.1a) 

with 

rn.n~P r,seQ 

= bY° + Uk; (7 ' ° lUk)  = 0 (5.1b) 
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and attempt to generate Cr,,k in a perturbative manner as follows. We rewrite Eq. 
(2.12) in terms of F and R (~) as: 

[ AE k -- F] T ° + [ AEk - F]Uk = R(')T~ °) + R(')Uk (5.2) 

where from Sect. 4 we have F and R (~) as: 

H = F + / 7  (~) and R = R  (°)+R (1) 

Hence Uk is given by: 

Uk =-- QUk = Q[ AEk - F ] - l r o ( l ) w o  tl, --l< + R(I)Uk] (5.3) 

From Eq. (5.3), Uk can be solved by iteration. From the structure of U~ it is 
clear that Uk can have no vacuum diagrams (since R (l) has no vacuum terms) 
and hence/left = PHO~P will also have no vacuum diagrams. /7~ in this energy 
dependent partitioning satisfies: 

- o p ( 1 )  p - ~ -  l p ( 1 )  ~ , , w o  (5.4) HefrT k = F + ~ [Q(AEk = AE k o - - ~ 1  a~Qpj ~ k  ~ 'PQ ~Jk 
n = l  

where Q contains only those manifolds which are retained in the truncated 
CC-LRT computations. We note here that the same equation follows by using the 
partitioning technique of L6wdin straight way to Eq. (4.7)for each AE k. In fact, 
we have: 

CQK = ( AEk - RQQ) - '  RopCpK (5.5) 

and 

I~ef f = Rpp + RpQ( AE k - RQQ)-1RQp (5.6) 

Using the partitioning of R into R ° + R (1), the Brillouin-Wigner series follows by 
iteration. Since Hef~ in Eq. (5.4) or (5.6) has only the energy-shifts AEk, this 
perturbative theory is of Bloch-Horowitz  type [50]; and likewise has no vacuum 
terms. Again as in the EIP technique, we may envisage either a power series 
expansion in R "), or in V. In the former we generate a Bloch-Horowitz theory 
involving the normalized R ~1) ("dressed" vertices including ground state correla- 
tion). In the latter we generate a particular variant of the Bloch-Horowitz type, 
where core excitation type of dangling blocks from the right have local Rayleigh - 
SchrSdinger like denominator, while the rest of the diagram have Bloch-Horowitz 
type denominators. The genesis of this hybrid structure can be traced to the fact 
that R (1) contains T, and T has the Rayleigh-SchrSdinger power series in terms 
of V. The series in V for T has the same structure of core excitation described 
above, while the factor Q[AE k - -F]-1 generate the usual Bloch-Horowitz like 
denominators. Thus a third order diagram like the one shown in Fig. 7a will 
appear in the series of/tefr of Eq. (5.4) or (5.5). The right going core-excitation 
stems from a/ '1 and has a local denominator of the Rayleigh-Schr6dinger type. 
The other denominator is global and is of Brillouin-Wigner type. The conjugate 
diagram of  Fig. 7a, will have an altogether different structure. This is illustrated in 
Fig. 7b. Since this diagram has no core-excitation from the right, they cannot 
stem from T-diagrams, hence has only Bloch-Horowitz denominators, de- 
noted by double line boxes. This unsymmetrical structure of the series owes 
itsorigin to the fact that the series of T in power series of V has only 
core-excitation from the right, and none from the left. Hence core-excitation 
from the left do not come from the T and acquire from Bloch-Horowitz 
denominators. A more telling demonstration of this fact can be given by 
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a bl 

Fig. 7. a A third order diagram in 
the B- W form of/teer in the 
CC-LRT. The two vertices from the 
right contribute to a T~, and has a 
loeal R-S intermediate. The other 
denominator is global and is of 
B- W type. b The conjugate diagram 
having global B- W denominator 
only 

Fig. 8. a A diagram with a 
self-conjugate skeleton. The 
right-most vertex, with a right-going 
core-excitation, has a local R-S 
denominator. The rest are all global 
B- W denominators. Note that the 
left-most vertex, with a left-going 
core-excitation is traced differently 
from the right-most vertex, b The 
genesis of the diagram of Fig. 8a 
from a Tz-vertex 

considering the diagram of Fig. 8a. The two projected core-excitations (on the 
right and left) have completely different denominators. The one on the right 
stems from a 1"2-vertex (Fig. 8b), and thus has a Rayleigh-Schr6dinger denom- 
inator. Using the terminology of Brandow [38], we may say that the series has 
only downward reducibility. We may remark here that Refr generated from the 
EIP also clould have been expanded orderwise in V (i.e. R <1) expanded in power 
of V). In that case all the denominators would have been of Rayle igh-  
Schr6dinger type. However, in that case the right going core-insertions would 
have local denominators, while the left going ones would have global denomina- 
tors. Thus the diagrams of Figs. 7 and 8 would have resulted, with the difference 
that the double-barred denominators have to be interpreted as global Rayle igh-  
Schr6dinger denominators. 

We shall show in Sect. 6 that one may achieve both downward and upward 
reducibility provided we use a unitary cluster operator for ~c. This generates a 
unitarized version of CC-LRT,  which we shall discuss only by way of illustration 
and to show the emergence of Algebraic Diagrammatic Construction (ADC). 
The extensivity of  the AEk's are also somewhat different. 

6. Relation of CCLRT-like theories with ADC 

In recent years, Schirmer, Cederbaum and others [56] have proposed a modified 
Green's function theory, currently known as the Algebraic Diagrammatic  Con- 
struction (ADC),  where the space in which the poles of  Green's function are 
sought (roughly equivalent to the space of inner projection of the associated 
superoperator resolvent (w - / 4 ) - 1 )  is systematically expanded depending on the 
order of  perturbation. Also, to analyze the pole structure of  G, it is recom- 
mended in ADC to split the forward and backward components [56] of  G, G+ 
and G ,  and analyze each of these separately. It was shown recently [57] that 
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ADC follows from the Green's function theory if 7'g r is represented in terms of 
a unitary cluster operator of the form: 

I//g r m_ exp(a) 40 (6.1) 

where 

a = T -  T + (6.2) 

This indicates that a comparison of ADC with the CC-LRT as formulated 
and discussed by us is not possible. However, we may envisage a new formulation 
of linear response theory where the essential spirit of CC-LRT could be retained. 
This will be a unitarizedformulation of CC-LRT(UCC-LRT) which still keeps 
the renormalized TDA-like structure of the working equations. 

In this modified formulation, we make use of an ansatz of the form: 

7' k = exp(a) W~ 40 (6.3) 

where W + is written in terms of the operators {Z + } of the traditional CC-LRT. 
Using the same type of arguments as in CC-LRT, we ultimately find: 

RhCk = AEk C k (6,4) 

where R h is a matrix with elements: 

R~., = (4o IZ , [H  h, Z+]14o)  (6.5) 
where: 

/ t  h = exp( - a)H exp(a) - g g  r (6.6) 

and is the hermitian "dressed" operator. It then follows that R h itself is 
hermitian. This formulation obviously is core-extensive, since g g  r is generated 
from a unitary cluster operator exp(a) for the core. 

The chief difference between UCC-LRT and CC-LRT are (i) the nontermi- 
nating nature of the series for / - I  h, since exp(a) has both T and T+; (ii) more 
complicated equation for T (and T +) for the ground state, since the unitarized 
CC equations for the ground state contain again non-terminating series of T 
(and T+). Despite the more complicated structure, UCC-LRT has certain 
redeeming features which are interesting. 

One important aspect is the emergence of ADC, as we shall show now. Since 
exp(a) is unitary, the expression for Gab for Green's function may be written as 
[ 57]: 

Gab = (4o ] exp( -- a)a(co -- I~) - 'b + exp(a) [ • o) 

___ ( Oo [ exp( - o-)(co - / 4 )  - 'b + a exp(a) [ 40 ) (6.7) 

Let us note that the nature of poles in the two terms in Eq. (6.7) is dictated 
by the types of functions reached by b + exp(a) and a exp(o-) respectively, acting 
on I Oo). Following Prasad et al. [58], we introduce a complete set of functions 
I t / k )=exp(a )Z ; [Oo) ,  ( q ~ l = ( 4 o [ Z k e x p ( - a )  for all k in the resolution of 
identity. We further subdivide them as It/+ ) and It//-) for representing states 
reached by b + exp(a) and a exp(a), respectively. They have the properties: 

(4o[ exp( -~ )a lq ;  ) = (Oo]~TZ~-+ 14o) = (Oo[[~, Zk+]14o) (6.8) 

and there is a similar equation for Z + . Here ~ is the unitary transform of a: 

~7 = exp( - a)a exp(a) (6.9) 
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Introducing the transformed superoperator H via: 

H = e x p ( -  a)/~ exp(a) 

we obtain 

D. Mukhopadhyay et al. 

(6.10) 

Go,  = Z,t+]l' o - RE ] ; , '  <¢,o[[Z?+, 

+< ol[g + , z  + a - ,  _],,, (6.11) 

where the matrices R~ and R h_ are the same as the ones introduced in Eq. (6.5). 
For excited states 7J[, we have the basis exp(a)Z/-+, and for 7//- we have the 
basis exp(a)Z~-_. The corresponding matrices are then Rh+ and Rh_. Equation 
(6.11) indicates that the poles of Gab, utilizing the unitary cluster ansatz for gigs, 
would generate the same poles as those obtained by diagonalizing the matrix R h 
(for + and - separately). Thus UCC-LRT has the same information content 
about energy differences as the Green's function where 7~gr is given as a unitary 
cluster ansatz. The poles of the Green's function are also obtainable from Eq. 
(6.11) as a bonus. 

Let us expand a in powers of V, and also retain in the expression of ~7 terms 
upto order n in the residues. It is interesting to note, that ~i t'l contains a finite 
number of operators Z~ upto order n, and hence the dimension of the matrix R h 
and the manifold defining R h is automatically defined at each order n. Clearly, 
at higher n's the rank of Z~ will increase, and as a result the dimension of 
R h also will likewise i~lcrease. For consistency at a given order, it is reasonable 
then to truncgte /~ also at the order n, and evaluate the matrix 

+11 go>. 
ADC will emerge from UCC-LRT if we enclose the operator manifold {Z[  } 

depending on the order of perturbation V. Operationally this will mean that we 
first define a primary manifold defined by a, b +. For example for IP/EA, these 
manifolds are lh/lp types, and for EE lp-lh types. Depending on the order of 
perturbation, the transformed operators ~[,1, g+[.] will generate {Z~4"]}. If we 
truncate our manifold after those Z~-'s generated by 8[,1 and ~[,1, and construct 
the matrix R hE"l us ing/1  Enl, then AEi's obtained from UCC-LRT[n] are the same 
as those obtained from ADC(n). 

The other interesting aspect of UCC-LRT is its ability to generate a 
Rayleigh-Schr6dinger or Brillouin-Wigner series, depending on whether EIP or 
EDP is used, in a model space that respects both upward and downward 
reducibility. In contrast to Sin, obtained from EIP, the 2;~p that will be generated 
by the EIP on R h will have an R °) involving cr which has botla T and T ÷. Thus, 
Z~e has both upward and downward going core excitations with local denomina- 
tors, indicating both upward and downward reducibility [38]. With EDP, an 
energy dependent/-7~a~ follows, having upward and downward reducibility for the 
core-excitations with the rest of the denominators as of Brillouin-Wigner type. 

Finally, we make a comment on the nature of extensivity of the satellite 
peaks obtainable from the UCC-LRT for the IP/EA problem. Since R h is 
hermitian, it has neither nh-np excitations nor de-excitations. As a result, when 
solving for the shake-up roots by diagonalizing 2;~Q using the analogue of Eq. 
(4.15), we would never encounter terms of Fig. 1. Thus, the satellite roots will be 
core-valence extensive in UCC-LRT, since Z~Q then contains a connected 
operator acting in a quasi-complete space. We note that this feature is due to the 
hermitian nature of R h, and is very special. For EE and other higher valence 
problems, the energy differences will remain core-extensive. We also mention 
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here that UCC theories for the closed shell are proving to be efficacious for property 
and gradient calculations for the closed shells [59]. 

7. Aspects of extensivity of energy differences of the quasi-Fock CC theory 

When we are interested in the energy differences involving states obtained from 
multi-valence model functions and the ground state, it appears somewhat 
extravagant to invoke a Fock space strategy and generate the cluster amplitudes 
of the parent model space by proceeding hierarchically upwards. A more desirable 
approach is to invoke the factorizability, Eq. (2.10), for D and solve for D~ for 
the parent model space only - bypassing the hierarchical generation. Recently we 
have shown [45, 46] that such a formulation is possible by choosing a Hilbert 
space type approach, f2 v has the form of a Fock space valence wave-operator 
projected on the desired incomplete model space. Since the full D has also in it 
the wave operator of the closed shell ground state, which generally differ in the 
number of electrons as compared to the excited or ionized state, we may call such 
a formulation as a quasi-Fock CC theory [45, 46]. One may even delete all references 
to the ground state itself and can generate a CC theory for the full I2 directly 
[45], which may be called a quasi-Hilbert CC theory. This latter formulation is 
closely related to the development of the quasi-Hilbert type put forward by 
Meissner et al. [47a] and Meissner and Bartlett [47b], to be discussed later. 

In the quasi-Fock formulation, we write D as: 

D=f2cf2v 

with 

f2~ = ~ exp(S~) [ (b u)< g'~ I 
/ t  

(7.1) 

(7.2) 

where S ~ has all the quasi-open and open operators involving excitations out of 
]~b"). Since a quasi-open operator may generally induce transition to another ~" 
by its action on a ~", it is tempting to drop from a S ~ such quasi-open operators. 
This would then violate the decoupling conditions on Fock space, Eq. (2.19) since 
there Dv contains all the possible quasi-open operators. We thus have to keep all 
the quasi-open Operators in S" regardless of whether some of them make 
transitions within the model space./g~er by construction come out as closed, and 
pairs of functions (cb", (be) joined by a quasi-open operator would have zero-entry 
in the matrix of/t~ef in the Hilbert space. The quasi-Fock space Bloch equation 
for energy differences may be written as: 

exp( - SU)/-7 exp(S~) ] ~b ~) = ~ exp( -S")  exp(S~)] q~v)< q~"l/-Teer] ~b~) (7.3) 
v 

In using Eq. (7.3) for each cbu, we shall take ~b ~ as the vacuum for the 
manipulations. It has been proved [45, 46] that S v and Heer are both connected. 
To be more precise, we should label/-7~er by/* (i.e.,/~er) when it acts on ~b ", since 
while rewriting fTcer in normal order with respect to ~u, only the potentially 
nonvanishing terms are retained, leading to an explicit # dependence. Thus: 

/7~er[ q~) -= Bgtrl ~ )  (7.4) 

Since/-7~er is a closed operator by construction, it has the same block structure 
in the matrix representation for the model space. As an example, with 
the model space of lh - lp + 2h -2p for EE, we have the block structure of the 
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type shown in Fig. 4. One may imagine then that the core-valence extensivity of 
the associated energies would follow in a way exactly analogous to what was 
found for the Fock space using a perturbative solution of the diagonalization. 
There is, however, a subtle but nontrivial difficulty./Tel in the Fock space theory 
was a unique operator, written in normal order, with respect to a fixed vacuum. 
Reef in the quasi-Hilbert space theory has a structure dependent on ~b~ it is acting 
upon. Thus the familiar use of Franz-Mills  identity [54], invoked in proving the 
cancellation of the disconnected norm correction terms with similar terms from 
the general sum at each order of perturbation, cannot be used. We cannot juggle 
an He~f and make it act on a ~b", to effect a cancellation. A rather tricky and 
involved proof using the concept of "connected" entities [45] was, in fact, needed 
in this case. 

We may, however, propose a rather simple alternative proof of the connectiv- 
ity of the energies. The proof does not allow us to calculate the values for the 
energy differences at each order of perturbation unlike the more elaborate proof 
[45]. It is, however, sufficient to prove the extensivity. 

Since the matrix elements (Ov]/Te~fl ~bu> are all connected, we may infer that 
there exists a connected closed operator hef written in normal order with respect 
to a fixed vacuum, whose matrix-elements satisfy: 

< vl/  fl = <+vlhofl <7,5) 
The important point to note here is that hef t must be a connected closed 

operator, since a disconnected her would violate connectedness of the matrix 
elements of and presence of quasi-open operators in her would 
violate Eq. (7.5). The right side would thus be non-zero for the pairs (cb ', q)") 
joined by a quasi-open operator, while the left side would be zero by construc- 
tion. There need not be a unique her for our subsequent proof, although the 
existence of a unique h~f seems pretty clear. 

Using Eq. (7.5), one may interpret the matrix involving elements 
.(4~"1/7~f[O ~) as involving the operator h~f. The block structure and null entries 
m the matrix remain exactly the same. Since there is now a unique operator her, 
we may invoke the Franz-Mills  identity to prove the connectivity of the energy 
differences in a way exactly analogous to what was done for the Fock space CC 
theory. For a recent application of the formalism, we refer to the Ref. [46]. 

In their development of quasi-Hilbert type CC theory, Meissner et al. [47a] 
analyzed the consequence of including in S ~ only those operators leading to 
excitations from O~ to functions outside the model space. This appears at first 
sight to be an eminently sensible choice for a Hilbert space type of formulation. 
An order by order expansion for S ~ was, however, shown to lead to disconnected 
diagrams stemming from the terms [S ~ - Sq whenever if S v does not include the 
same excitations as those considered in S ~. Clearly only quasi-open operators are 
the ones that either excite out of the model space or lead to scattering within the 
model space. The origin of the disconnectedness stems thus from partial inclu- 
sion of the quasi-open operators. For consistency, one has two choices: (a) to 
consider only special type model spaces where a quasi-open operator exciting out 
a 4)" can never lead to scattering within the model space and thus avoid the 
situation described above; (b) to include all the quasi-open operators in all the 
S~'s. We should note that the choice (a) corresponds to working with quasi-com- 
plete model spaces only, and Meisner et al. [47a] proved the connectivity of H~f 
first utilizing this model space. Meissner and Bartlett in a subsequent communi- 
cation [47b] choose the option (b), the same choice as that of Mukhopadhyay 
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and Mukherjee [45, 46], where S~'s are chosen as consisting of "open" and 
"quasi-open" type, and proved the connectivity of He~. A connected formulation 
of MBPT in the same spirit has also been considered by the same group [48]. 

8. Conclusions 

We conclude this paper by summarizing our principal findings: 
(1) We have discussed in detail the separability property of energy differences, 

emphasizing its semi-local nature in that, in the asymptotic limit of their 
noninteracting subsystems, AE becomes additively separable as AEA, AEA + AEs, 
etc. depending on the subsystems excited. When only one subsystem is excited, 3E 
depends only on the AEA, and is size-intensive in this sense. When more than one 
subsystem is excited, we talk of additive separability of AE, and this may be viewed 
as valence-extensivity in the effective hamiltonian framework. 

(2) For the separability of AE, it is essential to have the extensivity of Egr, 
taken as the base of energy. This aspect of separability has been termed by us as 
core-extensivity. 

(3) When both valence-extensivity and core-extensivity is satisfied, we have 
a core-valence extensive theory for energy differences. In contrast, when only the 
core-extensivity is satisfied, we have called these theories as core-extensive. The 
open-shell CC theory is core-valence extensive and the CC-LRT is core-extensive. 

(4) We have analyzed and illustrated the core-extensi~vity of CC-LRT and 
core-valence extensivity of the CC theory for one valence and two-valence 
problems. An essential aspect in this analysis has been unified treatment of 
CC-LRT and CC theories in the effective hamiltonian framework using Bloch 
equation. Generic nature of the wave-operators in CC-LRT and CC theory have 
been indicated. 

(5) It is shown that the CC-LRT is equivalent to CC theory for IP/EA 
(one-valence problem), both of which generate core-valence extensive energy 
differences. The satellite roots, in contrast, are only of the core-extensive type. A 
novel partitioning technique has been proposed in this paper to analyze perturba- 
tively this aspect of the problem. 

(6) It is remarkable that even for the one valence model space in the CC 
theory, the satellite energies obtained from the 'alternative solutions of the CC 
equations are not valence-extensive. This indicates the necessity of the existence 
of an analytic series (even if formal) of Sv in powers of V in proving the connectiv- 
ity of/-Teer. The alternative solutions are not obtainable as power series in V. 

(7) CC-LRT and CC theories have been shown to be inequivalent for 
two-valence problems and their behaviourial differences have been analyzed. 
Perturbative analysis has been carried out both in the Rayleigh-Schr6dinger and 
in the Brillouin-Wigner form. 

(8) An energy dependent partitioning produces an energy dependent effective 
hamiltonian. A perturbative expansion generates a Bloch-Horowitz type of series 
having a hybrid structure: the core-excitations from the right side have Rayleigh- 
SchrSdinger local denominators (downward reducibility) while the rest of the 
terms have Bloch-Horowtiz denominators. Since there is no "upward reducibil- 
ity" there is an inherent asymmetry in the treatment of the conjugate diagrams. 

(9) A unitarized version of CC-LRT is formulated where a unitary cluster 
operator is used to c o n s t r u c t  I/Jg r, This leads to UCC-LRT which has an 
underlying hermitian matrix R. It is pointed out that an energy independent 
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partitioning on UCC-LRT will lead to a Rayleigh-Schr6dinger theory having 
both upward and downward reducibility. 

(10) ADC is shown to emerge from the UCC-LRT at any given order of 
perturbation. 

(11) The satellite peaks from UCC-LRT for IP/EA have been shown to be 
of core-valence extensive variety despite the fact that the underlying wave-opera- 
tor has a linear expansion structure, owing to the hermitian nature of the matrix 
to be diagonalized. 
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